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• Zet uw naam en collegekaartnummer op elk blad alsmede het totaal aantal ingeleverde bladzij-
den.

• De verschillende onderdelen van het vraagstuk zijn zoveel als mogelijk is, onafhankelijk van
elkaar. Indien u een bepaald onderdeel niet of slechts ten dele kunt maken, mag u de resultaten
daaruit gebruiken bij het maken van de volgende onderdelen. Raak dus niet ontmoedigd indien
het u niet lukt een bepaald onderdeel te maken en ga gewoon door.

• Bij dit tentamen mogen boeken, syllabi, aantekeningen en/of rekenmachine NIET worden ge-
bruikt.

• De twee vraagstukken tellen ieder voor de helft van het totaalcijfer.

• Het tentamen telt VIER bladzijden.
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Exercise 0.1 (Adjoints, vector calculus and quaternions). Write C for the linear space C∞c (R3) of
C∞ functions on R3 with compact support and introduce the usual inner product on C by 〈 f, g 〉C =∫
R3 f(x)g(x) dx, for f and g ∈ C. Consider the linear operator Dj : C → C of partial differentiation

with respect to the j-th variable, for 1 ≤ j ≤ 3.

(i) Prove that Dj is anti-adjoint with respect to the inner product on C, that is,

〈Djf, g 〉C = −〈 f, Djg 〉C .

Denote by V the linear space of C∞ vector fields on R3 with compact support and introduce an inner
product on V by 〈 v, w 〉V =

∫
R3〈 v(x), w(x) 〉 dx, for v and w ∈ V . Here the inner product at the

right-hand side is the usual inner product of vectors in R3. Furthermore, consider the linear operators
grad : C → V and div : V → C.

(ii) For f ∈ C and v ∈ V , verify the following identity of functions in C:

div(f v) = 〈 grad f, v 〉+ f div v.

Use this to prove
〈 grad f, v 〉V = −〈 f, div v 〉C .

Conclude that −div : V → C is the adjoint operator of grad : C → V .

(iii) For v and w in V , prove the following identity of functions in C:

div(v × w) = 〈 curl v, w 〉 − 〈 v, curlw 〉.

Hint: At the left-hand side the operator D1 only occurs in the term D1(v2w3 − v3w2) and apply
Leibniz’ rule. Next determine the occurrence of D1 at the right-hand side.

(iv) Deduce from part (iii) that
〈 curl v, w 〉V = 〈 v, curlw 〉V .

In other words, the linear operator curl : V → V is self-adjoint.

Now consider the following matrix of differentiations acting on mappings (
v
f

) : R3 → R4:

M =
( curl grad
−div 0

)
=


0 −D3 D2 D1

D3 0 −D1 D2

−D2 D1 0 D3

−D1 −D2 −D3 0

 .

The preceding results (in particular, part (i)) imply that M is a symmetric matrix, which in this context
must be phrased as M t = −M (when “truly” transposing the matrix we also have to take the transpose
of its coefficients).

(v) Verify that −M2 equals Gram’s matrix associated to M , that is, the matrix containing the inner
products of the column vectors of M . Deduce M2 = −∆E, where ∆ is the Laplacian and E the
4× 4 identity matrix. Derive, for f ∈ C and v ∈ V

curl grad f = 0, div curl v = 0, curl(curl v) = grad(div v)−∆v,

where in the third identity the Laplacian ∆ acts by components on v. Finally, show how to derive
the second identity from the first.
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Background. We may write M = D1I + D2J + D3K, where I , J and K ∈ Mat(4,R) satisfy
I2 = J2 = K2 = IJK = −E. As a consequence IJ = −JI = K. Phrased differently, the
linear space over R spanned by E, I , J , K provided with these rules of multiplication forms the
noncommutative field H of the quaternions. In addition, analogously to the situation in dimension 1
where (i d

dx)2 = − d2

dx2 , we have decomposed the Laplacian on R3 in a product of matrix-valued linear
factors: ( ∂

∂x1
I +

∂

∂x2
J +

∂

∂x3
K

)2
= −

( ∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
E.
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Exercise 0.2 (Left-invariant integration on Mat(n,R)). As usual, we write C0(Rn) for the linear
space of continuous functions f : Rn → R having bounded support. Furthermore, we identify the
linear space Mat(n,R) of n × n matrices over R with Rn2

; in this way, by using n2-dimensional
integration, we assign a meaning to∫

Mat(n,R)
f(X) dX

(
f ∈ C0(Mat(n,R))

)
.

(i) In particular, suppose n = 2 and consider the subgroup

SO(2,R) =
{( cos α − sinα

sinα cos α

)
∈ Mat(2,R)

∣∣∣ − π < α ≤ π
}

of all orthogonal matrices in Mat(2,R) of determinant 1. Without proof one may use that φ is a
C∞ embedding if we define

φ : ]−π, π [ → R4 by φ(α) = (cos α, sinα,− sinα, cos α).

Now prove vol1(SO(2,R)) = 2π
√

2.

(ii) Prove, for any f ∈ C0(R) with 0 /∈ supp f and any 0 6= y ∈ R,∫
R

f(y x)
x

dx =
∫
R

f(x)
x

dx.

We now generalize the identity in part (ii) to Mat(n,R). We shall prove, for every f ∈ C0(Mat(n,R))
with supp f ⊂ GL(n,R) (= the group of invertible matrices in Mat(n,R)) and Y ∈ GL(n,R),

(?)
∫

Mat(n,R)

f(Y X)
|det X|n

dX =
∫

Mat(n,R)

f(X)
|det X|n

dX.

Given Y ∈ GL(n,R), define

ΦY : Mat(n,R) → Mat(n,R) by ΦY (X) = Y X.

(iii) Show that ΦY is a C∞ diffeomorphism satisfying DΦY (X) = ΦY , for all X ∈ Mat(n,R).

Denote by e1, . . . , en the standard basis (column) vectors in Rn, then a basis for Mat(n,R) is formed
by the matrices

Ei,j = (0 · · · 0 ei 0 · · · 0) (1 ≤ i, j ≤ n),

where ei occurs in the j-th column. The ordering is lexicographic, but first with respect to j and then
to i. In the case of n = 2 we thus obtain, in the following order:

E1,1 =
( 1 0

0 0

)
, E2,1 =

( 0 0
1 0

)
, E1,2 =

( 0 1
0 0

)
, E2,2 =

( 0 0
0 1

)
.

(iv) Verify ΦY (Ei,j) = (0 . . . 0 Y ei 0 . . . 0). Deduce that the matrix of ΦY with respect to the (Ei,j)
is given in block diagonal form with a copy of Y in each block and that det ΦY = (det Y )n.
Hint: First consider explicitly the case of n = 2, where the matrix of ΦY belongs to Mat(4,R).
Then treat the general case.

(v) Prove ΦY (GL(n,R)) ⊂ GL(n,R). Now show the validity of (?) above by applying parts (iii)
and (iv).

(vi) Select Y ∈ GL(n,R) satisfying det Y = −1 and set f(X) = detX . With these data (?)
implies −1 = 1. Explain!

4



Solution of Exercise 0.1

(i) Because f and g are of compact support, it is possible to select an open ball Ω ⊂ Rn containing
supp(f) and supp(g); in particular, f and g vanish along ∂Ω. The formula then follows from
Corollary 7.6.2 because the integral over ∂Ω vanishes.

(ii) On account of Leibniz’ rule we have

div(f v) =
∑

1≤j≤3

Dj(f vj) =
∑

1≤j≤3

(Djf) vj +
∑

1≤j≤3

f Djvj = 〈 grad f, v 〉+ f div v.

Next integrate this identity over R3 and notice that Gauss’ Divergence Theorem 7.8.5 implies
that the integral of the left-hand side equals

∫
∂Ω f(y)〈 v(y), ν(y) 〉 dy = 0, for the same reasons

as in part (i). The final conclusion is a consequence of the definition of the adjoint in Section 2.1.

(iii) At the left-hand side D1 occurs in the term v2D1w3 +w3D1v2−v3D1w2−w2D1v3, while at the
right-hand side it occurs in −w2D1v3 +w3D1v2 +v2D1w3−v3D1w2, which is a rearrangement
of the former expression. Taking the indices modulo 3 one obtains analogous results for D2 and
D3 by means of cyclic permutation of the indices.

(iv) The desired results follow in the same manner as in part (ii).

(v) First note that −M2 = M tM where the right-hand side is Gram’s matrix according to Secti-
on 2.1. On the basis of the symmetry of Gram’s matrix and DiDj = DjDi, one has to perform
10 trivial mental calculations to establish that 〈Mi, Mj 〉 = δij ∆, for 1 ≤ i, j ≤ 3. This leads to
M2 = −∆E. One finds on the one hand

M2 =
( curl grad
−div 0

)( curl grad
−div 0

)
=

( curl ◦ curl− grad ◦div curl ◦ grad
−div ◦ curl −div ◦ grad

)
,

while on the other hand it equals (−∆)E. Comparison of the matrix coefficients leads to the
desired conclusions. Observe that in addition one recovers the definition ∆ = div ◦ grad. The
second identity follows from the first by taking the transpose.

Solution of Exercise 0.2

(i) We have
‖Dφ(α)‖ = ‖(− sinα, cos α,− cos α,− sinα)‖ =

√
2.

Therefore integration of the constant function 1 over the submanifold SO(2,R) with respect to
the Euclidean density gives

∫ π
−π

√
2 dα = 2π

√
2.

(ii) The formula is a direct consequence of the substitution x 7→ y x in the right-hand side of the
given formula.

(iii) The coefficients of the product matrix Y X are given by polynomial functions in the coefficients
of Y and X , therefore ΦY is a C∞ mapping. As Y ∈ GL(n,R), the mapping ΦY is invertible,
with ΦY −1 as its inverse; and this shows that ΦY is a C∞ diffeomorphism. The formula for DΦY

follows from Example 2.2.5, because ΦY is a linear mapping.

(iv) On account of the properties of matrix multiplication we have

ΦY (Ei,j) = Y Ei,j = Y (0 · · · 0 ei 0 · · · 0) = (Y 0 · · · Y 0 Y ei Y 0 · · · Y 0)
= (0 · · · 0 Y ei 0 · · · 0).
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The matrix of ΦY is obtained by successively applying ΦY to all the basis vectors in Mat(n,R).
Since the resulting n2×n2 matrix contains n identical blocks along the diagonal, the formula for
det ΦY follows.

(v) The inclusion is a consequence of the multiplicative property of the determinant. Application of
the Change of Variables Theorem 6.6.1 with Ψ = ΦY leads to (∗), because |det DΦY (X)| =
|det ΦY | = |det Y |n, for all X ∈ Mat(n,R).

(vi) In this case, the function f has no bounded support. Actually, the integral on the right-hand side
of (∗) is divergent.
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